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A B S T R A C T   

Paroxysmal atrial fibrillation (PAF) is a cardiac arrhythmia that can eventually lead to heart failure or stroke if 
left untreated. Early detection of PAF is therefore crucial to prevent any further complications and avoid fa-
talities. An implantable defibrillator device could be used to both detect and treat the condition though such 
devices have limited computational capability. With this constraint in mind, this paper presents a novel set of 
features to accurately predict the presence of PAF. The method is evaluated using ECG signals from the widely 
used atrial fibrillation prediction database (AFPDB) from PhysioNet. We analysed 106 signals from 53 pairs of 
ECG recordings. Each pair of signals contains one 5-min ECG segment that ends just before the onset of a PAF 
event and another 5-min ECG segment at least 45 min distant from the PAF event, to represent a non-PAF event. 
Seven novel features are extracted through the Poincaré representation of R-R interval signals, and are prioritised 
through feature ranking schemes. The features are used with four standard classification techniques for PAF 
prediction and compared to the existing state of the art from the literature. Using only the seven proposed 
features, classification performance outperforms those of the classical state-of-the-art feature set, registering 
sensitivity and specificity measurements of over 96%. The results further improve when the features are com-
bined with several of the classical features, with an accuracy increasing to 98% using a linear kernel SVM. The 
results show that the proposed features provide a useful representation of the PAF condition and achieve good 
prediction with off-the-shelf classification techniques that would be suitable for ICU deployment.   

1. Introduction 

Atrial fibrillation (AF) is one of the most common cardiac arrhyth-
mias affecting adults of any age [1]. AF occurs when the heart beats in a 
disorganized and irregular way, and if persistent and left untreated, can 
lead to various heart-related complications [2]. Although it is not 
immediately life-threatening in the same way as some other arrhyth-
mias, AF can lead to heart failure or stroke and thromboembolic events 
which increase overall mortality [3]. One in four people over 50 are at 
risk of AF which may severely impact on the quality of their life [4]. 
Approximately 0.7 million (13%) of the ≈5.3 million cases of atrial 
fibrillation in the United States are undiagnosed [5], and approximately 
15% of stroke patients present with AF, a figure that is projected to 
double by 2030 [5]. 

Atrial Fibrillation can be divided into three categories: paroxysmal 
atrial fibrillation (PAF), persistent atrial fibrillation and chronic atrial 
fibrillation. PAF presents as short duration episodes of AF, lasting from 

several minutes to days and is self-terminating. Persistent AF occurs 
similarly to PAF, but it cannot self-terminate without external treatment 
such as medication or electrical shock. Finally, chronic atrial fibrillation 
has the most significant effect on the body, lasting more than 7 days, and 
can prevent the heart rhythm returning to normal behaviour even with 
treatment. AF patients often start with episodes of PAF before their 
condition escalates to a chronic stage. Furthermore, about 18% of PAF 
evolves to permanent AF (persistent or chronic) over 4 years [6]. 

AF can be treated by medication or electrical shock issued by the 
implantable defibrillator device (ICD) [7]. Therefore, having an accu-
rate predictor of the onset of PAF is clinically important because it in-
creases the possibility to prevent the onset of atrial arrhythmias either 
electrically or using pharmacological treatments, and can enable more 
efficient and cost-effective screening protocols [8]. An accurate pre-
dictor would allow for a time-efficient and cost-effective screening 
procedure during a clinical visit which may decrease the risk of strokes 
and thromboembolic events [9]. 
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For more than four decades, researchers have attempted to predict 
PAF using electrocardiogram (ECG) signals [10]. PAF prediction work 
can be categorised into:  

a) Premature atrial complex (PAC) detection [11–15];  
b) Heart rate variability (HRV) analysis [12,16–24]. 

PAC detection assumes approximately 93% of PAF have been initi-
ated by PAC [25]. The majority of PAC detection methods in the liter-
ature analyse a 30-min ECG signal. The highest results, 99.6% in 
sensitivity and 99.4%, was obtained using a CNN by Jalali et al. [15]. 
PAC-based methods based on data obtained from the well-known 
PhysioNet atrial fibrillation prediction database (AFPDB) [26] are 
summarized in Table 1. Furthermore, Bashar et al. [27] has used the 
AFPDB database to test their proposed algorithm only specificity where 
they have reached 100% in specificity while only using selected number 
of patients from the database. They have obtained 124 segments of PACs 
from 13 patients, to evaluate proposed PAC detection system using 
tuned support vector machine and random forest along with 9 selected 
features. In more recent works, it has been shown better performance (as 
much as 10%) could be achieved using deep learning algorithm such as 
long short-term memory (LSTM) and recurrent neural network (RNN) as 
compared to machine learning classifiers, such as support vectors, lo-
gistic regression, etc while ECG signals have been process in the pro-
posed PAC detection methods [28–30]. 

Other approaches use heart rate variability (HRV) analysis to directly 
detect a PAF event. Previous works have used different HRV metrics 
such as time, frequency, bispectrum and nonlinear feature extracted 
from 5, 10, 15 and/or even 30 min HRV signal to predict PAF as shown 
in Table 2. In contrast to PAC analysis, these methods directly detect a 
PAF episode, require less computational power and can be implemented 
on an implantable device like ICD or pacemaker. As an ICD is one of the 

most common methods to restore the normal rhythm, it could be used 
effectively in PAF patients, especially with the recent advances in their 
power and battery life [7,21,31]. A PAF predictor could control the 
ICD’s antitachycardia pacing treatment method possibly allowing it to 
immediately restore normal sinus rhythm once an arrhythmia is detec-
ted. Generally, the ICD device is expected to operate for more than 5 
years after it is implanted in the human body [32]. To maintain the 
device lifespan, on-board computation must be minimised, which, in the 
context of a PAF prediction method means there must be a reduction in 
the:  

a) length of the signals analysed (reduce storage)  
b) the number of features calculated  
c) the complexity of the detection method 

In order to contribute to the goal of reduced computational load of 
onset of PAF detection in this context, this study presents a set of novel 
HRV features for the prediction of a PAF event. The paper describes the 
extraction of seven novel features that, when tested using four well 
established classification methods, yield accuracies of over 96.7%, 
almost 4% greater than the classical state-of-the-art feature set. These 
features are extracted from a Poincaré representation of 5-min segments 
of R-R interval signals extracted from patient ECG data. The features are 
compared to the state-of-the-art features within the literature and ana-
lysed in terms of importance using feature ranking schemes. A 10-fold 
cross-validation method is used to demonstrate the PAF prediction 
performances with different features sets. The novel features are tested 
by themselves, and when combined with existing features from previous 
research. 

The rest of the paper is organized as follows. Section II describes the 
proposed feature set. The experimental procedure is outlined in Section 
III. Results are presented and discussed in Section IV while conclusions 

Table 1 
Performance comparison between the previous works using PAC analysis on AFPDB database.  

Previous Works Method, Classifier and Signal Length VM SN (%) SP (%) 

Zong et al., 2001 [11] Number and timing of PACs, 30 min segment Single hold 79 – 
Hickey et al., 2002 [12] PACs analysis and spectral based HRV features along with proposed classier, 30 min segment 5-fold CV 79 72 
Thong et al., 2004 [13] PAC analysis with proposed three criteria classification method, 30 min segment Single hold 89 91 
Erdenebayar et al., 2019 [14] CNN, 30 s segment Single hold 98.7 98.6 
Jalali et al., 2020 [15] PACs analysis and resampling with CNN, 30 min segment 3-fold CV 99.6 99.4 
Bashar et al., 

2021 [27] 
PACs detection using SVM and RF along with 9 selected features Single hold – 100 

CNN = convolutional neural network; VM = validation method; SN = sensitivity; SP = specificity; CV = cross validation. 

Table 2 
Performance comparison between the previous works using HRV analysis on AFPDB database.  

Previous Works Method, Classifier and Signal Length VM SN (%) SP (%) 

Lynn et al., HRV based return and difference map proposed features with k-NN classifier, 30 min segment Single 
hold 

57 – 
2001 [16] 
Yang et al., HRV based proposed method: Footprint analysis, 10 min segment Single 

hold 
64 – 

2001 [17] 
Hickey et al., Spectral based HRV features along with proposed classier, 10 min segment 5-fold CV 53 80 
2002 [12] 
Chesnokov et al., 2008 [18] HRV based spectral and complexity analysis with neural network classifier, 30 min segment Single 

hold 
72.7 88.2 

Mohebbi et al., Time, frequency and nonlinear HRV features (12 metrics) with SVM classifier, 30 min segment Single 
hold 

96.3 93.1 
2012 [19] 
Costin et al., HRV features and morphological variability of QRS with proposed classifier, 30 min segment Single 

hold 
89.3 89.4 

2013 [20] 
Boon et al., Bispectrum and nonlinear HRV features (9 selected metrics) with SVM classifier, 15 min segment 10-fold CV 77.4 81.1 
2016 [21] 
Boon et al., Time, frequency, bispectrum and nonlinear HRV features (7 selected metrics) with SVM classifier, 5 min 

segment 
10-fold CV 86.8 88.7 

2018 [23] 
Ebrahimzadeh et al., 2018 

[24] 
Time, frequency and nonlinear HRV features (12 selected metrics) using mixture of experts classifiers, 5 min 
segment 

10-fold CV 100 95.5 

k-NN = k-nearest neighbour; VM = validation method; SN = sensitivity; SP = specificity; SVM = support vector machine; CV = cross validation. 
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are detailed in the final section. 

2. Proposed heart rate variability metrics 

The instantaneous heart rate is calculated from the R-R intervals 
detected from a recorded ECG signal. Considering each heartbeat has a 
maximum value, an R peak, R-R intervals are defined as a the time be-
tween instantaneous heartbeats, also known as the normal-to-normal 
intervals [33]. There are many classic HRV measures in time, fre-
quency, bispectrum and nonlinear domain which can capture both the 
sympathetic and the parasympathetic components of the autonomic 
nervous system [34,35] and have been used for arrythmia detection and 
prediction including PAF [19,21,22,36].  

a) Poincaré Plot Representation 

The Poincaré plot is a visual representation of R-R intervals [16, 
37–40] and is constructed as follows. Let us denote the R-R interval 
signal by: RR1, RR2, RR3, …, RRt, where RRi represent each R-R interval 
in millisecond and t is the number of R-R intervals in the signal under 
analysis. The return map is a plot of (RRi,RRi+1), i ∈ {1,2,…, t − 1} i.e., 
a plot of the points: (RR1,RR2),(RR2,RR3),…,(RRt− 1,RRt). Two standard 
deviations can be derived, namely SD1 and SD2, which, if the return map 
is considered as an ellipse, capture the minor and major semi-axes (Fig. 1 
(a)). SD1 and SD2 are defined as: 

SD1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

SDSD2

√

(1)  

SD2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2SDRR2 −
1
2

SDSD2

√

(2)  

where SDSD is the standard deviation (SD) of differences between 
adjacent R-R intervals, and SDRR is the standard deviation of all R-R 
intervals in the whole signal: 

SDSD= SD(RRi − RRi+1), i ∈ {1, 2,…, t − 1} (3)  

SDRR= SD(RRi), i ∈ {1, 2,…, t} (4) 

The width (SD1) of this ellipse, which is related to the fast beat-to- 
beat variability in the HRV, and the length (SD2) of the ellipse related 
to the longer-term variability of that data [41] are not the only features 
from return map that have been used before. Recent works also have 
proposed different angle of points or even number of clusters in the 
Poincaré plot as effective features in PAF prediction applications [38, 
42].  

b) Difference Map 

Another Poincaré-based representation for PAF prediction is the 
difference map of R-R intervals. Difference maps are constructed from 
the difference between consecutive R-R intervals (RRn+1 − RRn,RRn+2 −

RRn+1). Fig. 1 (b) and (d) shows the difference map plot of a healthy and 
onset of PAF R-R interval signals, respectively. If the return map is 
considered to capture the velocity of R-R intervals, the difference map is 
a visual representation of the rate-of-change of the velocity, i.e., the 
acceleration. 

In both Fig. 1 (a) and (b) which present return and difference map of 
normal cardiac signal respectively, changes are more gradual. In 
contrast, in Fig. 1 (c) and (d), changes are more sudden and chaotic 
showing disordered cardiac activity which may lead to atrial fibrillation. 
By showing the magnitude of velocity in the return map, we can study 
changes in the heart rate which is a relevant factor to monitor in the 
event of cardiac arrhythmias such as atrial fibrillation. Furthermore, the 

Fig. 1. The return map (left) and the difference map (right) of R-R intervals for normal and PAF ECG signals from the AFPDB (Patient No. 3.) SD1 and SD2 represents 
the dispersion along minor and major axis of the fitted ellipse. 
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difference map allows us to monitor the acceleration. This could help to 
monitor anomalies in the sinus node that control the heartbeat rate. 

The first feature proposed here is the covariance of X and Y axes of 
the difference map, calculated as follows: 

Cov(X,Y)=
1
n

∑n

i=1
(Xi − μx)

(
Yi − μy

)
(5)  

where Xi = RRi+1 − RRi and Yi = RRi+2 − RRi+1 and μ represent the 
mean of each axis. Slope and angle differences between normal and PAF 
difference maps which show the changes in heartbeat acceleration can 
be represented using the change in covariance value over time.  

c) Kernel Density Estimation 

A bivariate kernel density estimation (KDE) can also be applied to 
difference map. KDE is a nonparametric density estimator in statistical 
data analysis [43]. To calculate the final bivariate KDE of difference 
map, first consider a one-dimensional distribution function of each axis, 
where RRn+1 − RRn is the x-axis and RRn+2 − RRn+1 is the y-axis. Taking 
the x-axis first, let Xi = {x1, x2,…, xn} ∈ Rd be a random sample from 
distribution with unknown univariate probability density f(x). The 
standard kernel density estimator for f(x) is calculated as follows [44]: 

f̂ (x)=
1
nh

∑n

i=1
k
(

x − Xi

h

)

(6)  

where n is the number of observations, h is positive number called the 
smoothing parameter (h→0 with nh→∞ as n→∞) and k(x) is the kernel 
function satisfying the following conditions: 

0≤ k(x) < ∞ for all x, and
∫∞

− ∞

k(x)dx = 1 (7)  

where the most common kernel function is a Gaussian: 

k(x, Xi)=
(
2πσ2)− d/2exp

{

−
x − Xi

2

2σ2

}

(8) 

After calculating KDE for each dimension, the univariate form can be 
simply extended to bivariate or even multivariate form. In the most 
popular form, the standard bivariate kernel density estimator is written 
as follows [45]: 

f̂ (x, y)=
1

nhxhy

∑n

i=1
k
(

x − Xi

hx

)

k
(

x − Xi

hy

)

(9) 

Fig. 2 shows both univariate and bivariate KDE from difference map 
for both normal ECG, and ECG at onset of PAF event for patient No. 3. 
There are some similarities between the univariate KDEs for x- and y- 
axis for each condition (normal and PAF), as can be seen Fig. 2. There 
are also visible differences in the bivariate plots Fig. 2 (c) and Fig 2 (f). 
Six novel features have been calculated to better highlight these dif-
ferences between normal and PAF distributions.  

1) Univariate KDE Features 

There are two features extracted from one axis of a univariate KDE. It 
is sufficient to calculate these from one axis, given the similarity be-
tween the axes, which differ by one shift value. 

The first feature is the area between the peak and half peak values of 
the univariate KDE, indicated by the solid red line and dashed red line 
respectively on Fig. 2 (b) and (e). Then the area between is calculated as 

Fig. 2. The difference map probability density of one axis (left and centre columns) and the difference map KDE mesh plot (right) of the subject No. 3. The top row 
shows the normal event and bottom shows the onset of PAF for this patient. 
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follows: 

Area(y)=
∑

i
f̂ (y)i, where f̂ (y)i >max

(
f̂ (y)

)

*0.5 (10)  

where f̂ (y) is the univariate KDE function of y-axis and i counts all 
probability values which are higher than the half of the f̂ (y) maximum 
probability. 

As a second feature, the energy of the peak to half peak of the KDE is 
calculated as follows: 

Energy(y)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
f̂ (y)2

i

√

, where f̂ (y)i >max
(

f̂ (y)
)

*0.5 (11)    

2) Bivariate KDE Features 

Four metrics are extracted from the bivariate KDE. The first two 
metrics are the minimum and maximum spans of the bottom plan (XY) 
in the 3-D KDE plot which we call SurfMax and SurfMin respectively. As 
an example, in Fig. 2 (c) SurfMax is about 5.5 and SurfMin is − 5.5. 

The other two features are similar to the area and energy features 
univariate derived from the univariate distribution. In this case, we 
define a half-maximum plane in the distribution, and calculate the 
volume and energy of the area between that plane and the peak value: 

Volume(x, y)=
∑

i
f̂ (x, y)i (12)  

Energy(x, y)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
f̂ (x, y)2

i

√

(13)  

where f̂ (x, y)i > max( f̂ (x, y))*0.5. The seven proposed features are 
summarized in Table 3. 

3. Experimental methodology 

This Section discusses the use of the measures proposed in Section II 
to predict PAF based on 5-min segments of R-R interval signals derived 
from ECG patient data. An overview of the entire method is given in 
Fig. 3. The data are first pre-processed to extract R-R information and 
reduce noise. Features are then extracted and finally the system de-
termines whether the patient data is normal or abnormal using a range 
of classification techniques. The data are obtained from the PhysioNet 
atrial fibrillation database [26,46].  

a) PAF ECG Database 

The ECG data that have been used for this study were taken from the 
PhysioNet AFPDB database [26]. This is an annotated database and 
consists of 3 types of record sets. The first record set, starting with the 
letter “n”, comes from 50 subjects who did not experience atrial fibril-
lation at all. This set is usually used as “normal” ECG signal for tuning 
detectors [11,13,16,20]. The second record set was taken from 25 sub-
jects staring with letter “p”. Each subject in this set has 30 min of ECG 
signal (odd number) during a period that is distant from PAF, labelled as 
a normal ECG signal, and 30 min of ECG signal (even number) imme-
diately precedes a PAF episode. The third record set contains 100 an-
notated 30 min ECG signal recordings from 50 subjects. In this record 
set, there are subjects with signals that are all normal, in PAF onset, or 
one in each category. 

Based on previous works [12,18–21,23,24], the selection of subjects 
from the database can vary. Chesnokov [18] only extracted HRV signal 
from 16 patients. The selection criteria was the availability of at least 60 
min of signal length before PAF event to investigate the possibility of 
long-term prediction of PAF onset. Mohebbi et al. [19], extracted 106 
ECG segments immediately prior to an episode of PAF to evaluate their 
proposed algorithm. In common with the approach take in Refs. [21,24], 
in this research 106 events from 53 patients have been processed. Each 
patient contributes a pair of signals which consists of one 30-min ECG 
segment that ends just prior to the onset of a PAF event, and another 
30-min ECG segment at least 45 min distant from any PAF event, and 
therefore represents normal heart behaviour. With a number of classi-
fiers, 10-fold cross-validation has been used for evaluation. Each ECG 
segment contains two-channel traces from Holter recordings with sam-
pling rate of 128 Hz and 12-bit resolution. In this study we consider a 
5-min ECG segment based on proposed signals length in previous studies 
[23,24]. The 5-min ECG segment occurring at least 45 min from the PAF 
event is assigned a class label of “Normal”, while the ECG segment that 
immediately precedes the PAF event is given a class label of “Abnormal”. 
This method has been chosen as the algorithm is designed for use in 
implantable devices where the decision is based on each patient’s 

Table 3 
Proposed features extracted from difference map.  

Features Category Features Name Descriptions 

Difference Map Covariance (1 Metrics) Cov(X,Y) The covariance of X and Y axes of the difference map.  
Univariate KDE Features (2 Metrics) Area(y)

Energy(y)
The area and energy of the peak to half peak in univariate KDE. 

Bivariate KDE Features (4 Metrics) SurfMax 
SurfMin  

the minimum and maximum spans of the bottom plan (XY) in bivariate KDE   

Volume(x,y)
Energy(x, y)

The volume and energy of the area between that half-max plane and the peak value in bivariate KDE.  

Fig. 3. PAF prediction proposed algorithm block diagram.  
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healthy and PAF onset signals.  

b) Pre-processing and Noise Reduction 

HRV signals are extracted from the ECG signals using the annotation 
files provided with the database [26,46]. The annotation files are un-
audited and contain some errors in QRS detection, which are generally 
unavoidable in such data collection [26]. The presence of these errors 
presents a more challenging scenario for PAF prediction and will further 
test the robustness of the proposed algorithm. 

After using the annotations to find the R peaks, the R-R interval 
signals have been calculated and then resampled to 7 Hz by using the 
cubic spline interpolation. Then the instantaneous heart rate (IHR) 
signal is calculated from the R-R interval signals using the following 
equation: 

IHR(beats /min)=
60, 000

RRI (msec)
(14)  

where RRI (R-R intervals) is the time in milliseconds between instan-
taneous heartbeats. 

A two-step noise reduction method has been implemented to remove 
unwanted signal noise caused by e.g. muscular activity [47]. In the first 
step, to deal with spikes which present as noise or as ectopic beats, the 
signal has been corrected by McNames’s algorithm [48]. To apply the 
algorithm, the following statistic is first calculated on the IHR signals: 

D(n)=
|IHR(n) − IHRm|

1.483med{|IHR(n) − IHRm|}
(15)  

where med{…} is the median operator, IHR(n) is instantaneous heart 
rate for beat n, IHRm is the median value of the heart rate over a given 
window. The filtered instantaneous heart rate, ÎHR(n), is then calculated 
as a follow: 

ÎHR(n)=

⎧
⎨

⎩

IHR(n) D(n) < τ

med
{

IHR(n + m) : |m| <
wm − 1

2

}

D(n) ≥ τ
(16)  

where τ is application specific threshold value. If D(n) exceeds this 
threshold, the instantaneous heart rate is considered as abnormal, 
otherwise it considered as a normal value. In the abnormal case the heart 
rate is corrected as shown in equation (16), where wm is the window 
length of the median filter. In this work, τ and wm are set to 4 and 11 
respectively as suggested in Ref. [48]. The second step of the noise 
reduction scheme is based on the wavelet transform (WT) adapted to 
remove any artefact beats, similar to Refs. [33,49,50]. Using high and 
low pass filters, the WT can remove the higher frequencies of the 
background noise from the signals. In this research, the first 

approximation level of WT is taken, and the sym8 wavelet is used. The 
pre-processed signal is now ready for feature extraction.  

c) Feature Extraction 

In addition to the seven proposed features described in Section II, 
other features are also extracted from the pre-processed signals. These 
features have been used in previous PAF prediction studies [19–24]. The 
features have been selected from four categories: time domain, fre-
quency domain, bispectrum and nonlinear analysis and they have been 
summarized in Table 4 [33]. Using the formula in equation (14), the 
pre-processed signal can be converted to IHR or R-R interval signals for 
different feature extraction techniques. Four widely-used time-domain 
features are extracted from HRV analysis [51]. The time-domain fea-
tures used are MeanNN, SDNN, NN50, and pNN50 [50–57]. Time 
domain methods have low computational cost but cannot easily 
discriminate between the sympathetic (at low-frequency range 
(0.04–0.15 Hz)) and the parasympathetic contributions (at higher fre-
quency range (0.15–0.4 Hz)) in the HRV signals [58]. This distinction 
facilitates preventive intervention at an early stage when it is most 
beneficial [57]. In the frequency domain category, four features based 
on average power of HRV signals across the very low frequency (VLF) 
band (0.0–0.04 Hz), low frequency (LF) band (0.04–0.15 Hz), high 
frequency (HF) band (0.15–0.4 Hz), and ratios like LF/HF have been 
computed by integrating the power spectral density (PSD) estimated 
using Welch’s method in each frequency range of interest [19,23,56, 
59–61]. 

B(f1, f2) = bispectrum of HRV signal; LF = low frequency band 
(0.04–0.15 Hz); HF = high frequency band (0.15–0.4 Hz); LL = low 
frequency sub band region (LF-LF); HH = high frequency sub band re-
gion (HF–HF). 

Higher order spectral (HOS) features capture any quadratic phase- 
coupled harmonics which can be present due to non-linearities within 
the HRV signal. HOS reveals phase relations between the frequency 
components which cannot be observed through the regular power 
spectrum [57,62]. HOS features up to the third-order cumulant were 
used to estimate the bispectrum from HRV data in different HRV studies 
[19,21,23,36,56]. Based on [63] the bispectrum, as a symmetric func-
tion, has twelve symmetric regions. Within the region of interest (ROI) 
there are three sub-bands which can highlight the sympathetic and 
parasympathetic attributes of a HRV signal [36]. The magnitude average 
(Mavg), power average (Pavg), and logarithmic bispectrum features, are 
the most commonly used features from the bispectrum which have been 
extracted from the ROI; they are summarized in Table 4 [33,64]. 

By considering a HRV signal as an indirect representation of per-
manent interplay between the two branches of the ANS, the signal can 
be decomposed using nonlinear and dynamic analysis [65,66]. On top of 
the of the Poincaré plot features. 

Table 4 
Features from previous studies along with their descriptions [33,64].  

Features Category Features Name Descriptions 

Time Domain (4 Metrics) MeanNN Mean of normal-to-normal intervals or instantaneous heartbeats 
SDNN Standard deviation 
NN50 Number of adjacent R-R intervals differing by more than 50 ms 
pNN50 The number obtained by dividing NN50 by the total number of NN intervals 

Frequency Domain (4 Metric) PSD Power spectral density (PSD) in LL, LH, HH and ROI 
Bispectrum Analysis (15 Metrics) Mavg  Magnitude average of bispectrum in LL, LH, HH and ROI: Mavg =

1
N
∑

Γ
|B(f1, f2)|

Pavg  Power average of bispectrum in LL, LH, HH and ROI: Pavg =
1
N
∑

Γ
|B(f1, f2)|2  

Lm  Sum of the logarithmic magnitude of the bispectrum in LL, LH, HH and ROI: Lm =
∑

Γ
log(|B(f1, f2)|)

Ldm  Sum of the logarithmic magnitudes of the diagonal elements of the bispectrum in LL, HH and ROI: Ldm =
∑

D
log(|B(f1 , f2)|)

Nonlinear Analysis (6 Metrics) SD1 

SD2 

SD1/SD2  

The width (SD1) and the length (SD2) of the of generated ellipse in Poincaré plot (Fig. 1)  

Entropy Sample entropy, Rényi entropy, and Tsallis entropy  
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SD1, SD2, and SD1/SD2 from HRV data entropy features, as a measure 
of signal complexity are also used. Sample entropy [67], Rényi entropy, 
Tsallis entropy [68] have been extracted to highlight the complexity of 
HRV and aim to capture any regularity changes during the onset of a 
VT-VF event. Adding these 29 features from previous studies to the 7 
proposed features makes an initial feature set consisting of thirty-six 
features. Feature ranking and analysis is then used in order to priori-
tise features; this is described in more detail in Section IV.  

d) PAF Prediction 

In this work, four different classifiers have been applied to predict 
onset of PAF episodes by classifying each sample in one of two classes, 
either normal or abnormal, based on extracted features presented as a 
feature vector. A k-fold cross-validation technique is used to split the 
data evenly and record performance metrics for k = 10 folds in the 53- 
patient database (106 Normal and Abnormal events). 10 folds equates to 
having 48 patients in the training set and 5 patients in the test set. The 
same patient is never present in both the training and test set. 

The four classifiers are: support vector machine (SVM) [19,21,23], 
k-nearest neighbours (k-NN) [16,33,64], random forest (RF) [69] and 
multilayer perceptron (MLP) [18,24]. SVM has proven to be effective in 
previous studies on HRV classification [40,70]. The HRV pre-processing, 
feature extraction, optimization, and classification have been imple-
mented and developed in MATLAB R2018b, and feature analysis and 
selection used the MATLAB Statistics Toolbox along with the feature 
selection toolbox in Ref. [71]. For the SVM classifier, using Gaussian 
function as a kernel, we obtained the same results. In this paper we 
adopt a linear SVM to reduce the computational load and reduce the risk 
of overfitting. The kernel scale was set to 1 and box constraint set to 1.6 
[64]. Optimization of k-NN was carried out using different numbers of 
neighbours (1–50), along with different distance metrics such as Che-
byshev distance, cosine distance, Minkowski distance along with 
Euclidean distance. For k-NN the best number of neighbours was 5 and 
the Chebyshev distance has been applied in this study [16,33,50]. The 

Table 5 
The Lasso, mRMR, and ILFS features ranking and selection processing on 5 min signals from AFPDB database.  

Features Category Features Name Lasso mRMR ILFS 

Time Domain (4 Metrics) MeanNN 0 0 0 
SDNN 1 0 0 
NN50 1 4 14 
pNN50 1 2 2 

Frequency Domain (4 Metric) PSD in VLF 0 0 0 
PSD in LF 1 0 0 
PSD in HF 0 0 0 
PSD in LF/HF 1 1 3 

Bispectrum Analysis (15 Metrics) Mavg in LL  0 0 0 
Mavg in LH  1 0 0 
Mavg in HH  0 0 0 
Mavg in ROI  0 0 0 
Pavg in LL  0 0 0 
Pavg in LH  0 0 0 
Pavg in HH  0 0 0 
Pavg in ROI  0 0 0 
Lm in LL  1 0 0 
Lm in LH  1 0 0 
Lm in HH  1 0 0 
Lm in ROI  1 0 0 
Ldm in LL  1 12 4 
Ldm in HH  1 14 11 
Ldm in ROI  1 0 0 

Nonlinear Analysis (6 Metrics) SD1  1 7 5 
SD2  1 13 12 
SD1/SD2  0 0 0 
SampEn 0 0 0 
Rényi Entropy 0 0 0 
Tsallis Entropy 0 0 0 

Difference Map Covariance (1 Metrics) Cov(X,Y) 1 11 6 
Univariate KDE Features (2 Metrics) Area(y) 1 6 8 

Energy(y) 1 3 1 
Difference Map Covariance (4 Metrics) SurfMin  1 9 6 

SurfMax  1 8 7 
Volume(x,y) 1 10 10 
Energy(x, y) 1 5 13  

Table 6 
Summaries of experimental results using different feature set on AFPDB data-
base using 10-fold cross-validation method.  

Features Category Classifier SN (%) SP (%) ACC (%) 

Classic Features SVM 97.8 88.9 93.3 
MLP 95.6 91.1 93.3 
RF 98.8 87.8 93.3 
k-NN 91.1 82.2 86.7 

Proposed Features SVM 96.7 96.7 96.7 
MLP 90 96.7 93.3 
RF 93.3 96.7 95 
k-NN 90 83.3 86.7 

Combined SVM 98.8 96.7 97.7 
MLP 96.7 97.8 97.2 
RF 97.8 91.1 95 
k-NN 87.8 95.6 91.7 

SN = sensitivity; SP = specificity; ACC = accuracy. 
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method of random forests (RF) comprises an ensemble of decision trees, 
and has previously been used to distinguish various cardiac arrhythmias 
[50,72,73]. RF uses 64 trees with leaf size equal to 4 in this study [64, 
69]. Finally, the MLP has 5 hidden layers with 32, 32, 16, 16 and 4 nodes 
on each layer, respectively. The maximum epochs are set to 4096 using 
mean squared error with regularization function, and implemented in 
MATLAB R2018b. 

4. Experimental results 

In this section we test seven proposed HRV features along with a 
subset of the state-of-the-art features from previous studies to evaluate 
PAF prediction using 5-min R-R interval signals.  

a) Results of Feature Selection and Ranking 

Feature selection and ranking is used to firstly, make the model 
easier to interpret by removing the variables that are redundant; sec-
ondly, to reduce the size of the problem which enables algorithms to 
work faster; and thirdly, to guard against model overfitting. A range of 
methods for feature selection were evaluated in this study, with results 
shown in Table 5. LASSO (least absolute shrinkage and selection oper-
ator) was first formulated by Tibshirani [74]. It uses an L1 norm and 
tends to force individual coefficient values completely towards zero. It 
performs two main tasks: regularization and feature selection. LASSO 
puts a constraint on the sum of the absolute values of the model pa-
rameters where the sum has to be less than a fixed value which is called 
the upper bound. To do that Lasso applies a shrinking (regularization) 
process where it penalizes the coefficients of the regression variables, 
shrinking some of them to zero. The variables that still have a non-zero 
coefficient after the shrinking process are selected. As indicated in 
Table 5, twenty-two features have been selected with LASSO where all 
the newly proposed features are included. LASSO feature analysis and 
selection helps to deal with multicollinearity and redundant predictors 
by quickly identifying the key variables [75]. This set of features pro-
vides a useful baseline for further prioritization. 

To further analyse the original set of features, two other feature se-
lection and ranking methods are used. The minimal redundancy- 
maximal Relevance (mRMR) and the infinite latent feature selection 
(ILFS) are used for this. In the mRMR feature ranking method, the aim is 
to maximize the mutual information between the feature distribution 
and classes and, at the same time, minimize the redundancy between 
features [76]. The ILFS feature ranking method, on the other hand, is a 
robust probabilistic latent graph-based method which performs the 
feature ranking using all possible feature subsets [77]. Table 5 sum-
marises the results of ranking of the top 14 features using both ap-
proaches. These 14 features selected by mRMR and ILFS are a subset of 
the features identified by LASSO. It was found that incrementally adding 
more features does not improve the cross-validation result. Based on the 
results of feature selection and ranking, at least five out of the seven 

proposed features are included in the top 10 rankings using both ranking 
methods. Both methods include one of the proposed features at the 
highest rank.  

b) PAF Prediction: Results of Feature Comparison 

Results from different studies for PAF prediction have mainly been 
presented in terms of sensitivity (true positive rate), specificity (true 
negative rate), and accuracy: 

Sensitivity=
TP

TP + FN
(17)  

Specificity=
TN

TN + FP
(18)  

Accuracy=
TP + TN

TP + FP + TN + FN
(19)  

where TP, TN, FP and FN stand for true positive, true negative, false 
positive and false negative respectively. The results for different feature 
sets are presented in Table 6. The proposed features by themselves yield 
higher specificity and accuracy results than the classic feature set, 
though the classical features result in better sensitivity. By combining 
the proposed and state-of-the-art feature sets, a linear SVM achieves 
98.8% in sensitivity and 96.7% in specificity. The combination of pro-
posed and classical features combines the best performance features of 
each set of features, i.e., better overall sensitivity in the classical features 
mixed with high specificity provided by the proposed features.  

c) Discussion and Comparison with Previous Work 

The highest result using HRV analysis on the AFPDB, 100% in sensitivity 
and 95.5% specificity, was obtained in Ref. [24]. Although the sensi-
tivity reported in that study cannot be improved upon, better specificity 
has been achieved in the present study while both methods, our study 
here and proposed method in Ref. [24] resulted in the same overall 
accuracy (97.7%). However, the study in Ref. [24] is based on mixture of 
experts (ME) classifier that is a much more complex approach in com-
parison with the linear SVM that has been used on this study. Other 
classifiers were also used in Ref. [24] as shown in Table 7. Compared to 
the results reported in Ref. [24], the SVM-based method in this research 
has shown over 3% improvement in overall accuracy, k-NN over 2% 
improvement, and finally MLP over 6% improvement. These results 
suggest that the proposed features have potential for application in 
implantable device, where computational resources are limited. In 
particular, the proposed features improve upon specificity compared to 
previous research. 

5. Conclusion 

Predicting the onset of PAF can dramatically improve quality of life 

Table 7 
Comparison of experimental results in the leading literature using different classifiers on 5-minue of AFPDB ECG signals using 10-fold cross-validation method.  

Features Category Classifier SN (%) SP (%) ACC (%) 

Boon et al., 2018 [23] using time, frequency, bispectrum and nonlinear HRV features (7 selected metrics) SVM 86.8 88.7 87.7 
Ebrahimzadeh et al., 2018 [24] using time, frequency and nonlinear HRV features (12 selected metrics) SVM 96.3 93.1 94.6 

k-NN 92.3 86.7 89.3 
MLP 92.6 89.7 91.1 
ME 100 95.5 98.2 

Proposed Method using time, frequency, bispectrum and nonlinear HRV features (7 metrics) along with 7 proposed metrics SVM 98.8 96.7 97.7 
k-NN 87.8 95.6 91.7 
MLP 96.7 97.8 97.2 
RF 97.8 91.1 95 

SN = sensitivity; SP = specificity; ACC = accuracy. 
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in cardiac patients and decrease the risk of mortality. Accurate predic-
tion remains a significant challenge, considering the noise and inter-
ference present in recorded ECG measurements, as well as the 
computational limitations of wearable and implantable devices 
increasingly used for cardiac rhythm management. In this study, seven 
novel HRV features have been presented to address the PAF prediction 
problem. The features are shown to represent the problem space well 
compared to a selection of popular state-of-the-art features from the 
literature, using two feature ranking methods. Four classification algo-
rithms were used to compare the classic and proposed feature sets for 
PAF prediction, using data from the PhysioNet AFPDB database. Test 
and training data were split in a 10-fold cross-validation manner and 
both sets remained distinct. Using a linear SVM kernel, the proposed 
feature set provides an improvement of over 3% in accuracy over the 
leading published results in literature using the same classifier (97.7% vs 
94.6%). The proposed method could be used to trigger antitachycardia 
pacing (ATP) which is a less aggressive therapy that controls heartbeats 
on ICDs or other implanted devices, with more invasive electrotherapy 
reserved only for cases that absolutely require it such as ventricular 
tachycardia and ventricular fibrillation [78–80]. 

In the context of ATP, the occurrence of false positives is not asso-
ciated with a mortality [81]. On the other hand, ATP that is only applied 
on detection even on false negative has no effect on mortality [78, 
82–84]. However, there is a trade-off between early prediction and the 
buffering overhead available on a computationally limited ICD. The 
computational complexity has not been considered in the present study, 
however, examining the combinations of features along with computa-
tional requirements is planned as a future study. Investigating the KDE 
resolution could be the key to implement proposed method on ICDs as 
computational complexity of KDE decreases dramatically by lowering 
the resolution or using estimation methods for less complex calculation 
of KDE [85,86]. Furthermore, as the maps are almost Gaussian in nature, 
future works will investigate using Gaussian approximations instead of 
KDE [87] to classify between Normal and PAF events on verity of atrial 
fibrillation databases. 
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(2005) 39–48, https://doi.org/10.12921/cmst.2005.11.01.39-48. 
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[73] C. González, E.W. Jensen, P.L. Gambús, M. Vallverdú, Poincaré plot analysis of 
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